CS 385 Artificial Intelligence Exam 3

December 4, 2006
Open book, closed people, due 12/11. Submit work on at least 9 of the following problems.

1. Admission to graduate school in Sanskrit is based on motivation, intelligence, and ability to succeed in the program. Intelligence is determined by IQ and GPA. Ability to succeed in the program is determined by background and GPA. Motivation is determined by level of interest in Sanskrit. Build a conceptual model (e.g. a decision tree) and construct an expert system in M1 that will determine whether an applicant should go to SelectiveUm or EasyU.
 See M1Ex3P1 on class site.

2. Try to reverse engineer the grammar checker in MS Word, hypothesizing what knowledge structures it uses and how they are exploited. How sophisticated is this? How much could be considered to be AI? What techniques that you have learned this semester are appropriate to this task?

Knowledge structures:

· English grammar (productions? ATNs?)

· Vocabulary (frames)

How exploited:

· Scan words and compare with vocabulary. Identify possible matches for words not in the vocabulary.

· Parse sentences one at a time, no apparent connection between sentences

· If the parse succeeds, check for

· passive voice

· wordiness

· extra spaces between words
· ending sentence with a preposition

· their/there

· If the parse fails, try to identify the cause

· agreement between subject and verb

· fragment

· its/it's
· Move to next sentence
How sophisticated:

· No apparent contextual knowledge
· No connection between sentences.
3. Augment the transition network in Figure 14.4 to handle prepositional phrases. Trace the parse of a representative sentence
.

[image: image1.wmf]prep_phrase

S

initial

S

final

nounphrase

preposition

[image: image2.wmf]S

initial

verb

noun

phrase

S

final

verb

verb_phrase

verb

prep

phrase

[image: image3.wmf]S

initial

S

final

noun phrase

verb phrase

verb phrase

noun phrase

prep

phrase

verbphrase

sentence

The dog on the dock barks

article dog on the dock barks

article noun on the dock barks

nounphrase on the dock barks

nounphrase preposition the dock barks
nounphrase preposition article dock barks

nounphrase preposition article noun barks

nounphrase preposition nounphrase barks

nounphrase prepphrase barks

nounphrase prepphrase verb

nounphrase prepphrase verbphrase

sentence

4. Augment the structures in Figure 14.6 and 14.7 and the ATN grammar in Figure 14.8 to handle whether a noun is animate or inanimate and whether an action of a verb is performed by an animate or inanimate noun. Add several nouns and verbs and illustrate the parsing of a representative sentence.

New Noun Phrase definition:
	Noun_phrase

	Determiner:

	Noun:

	Number

	Animate

New Verb Phrase definition:
	Verb_phrase

	Verb:

	Number:

	Object:

	Animate

	

Add dictionary entries for.dog and barks:

	PT_OF_SPCH: noun

	ROOT: dog

	NUMBER: s

	ANIMATE: y

	
	

	PT_OF_SPCH: verb

	ROOT:bark

	NUMBER: s

	ANIMATE: y

function sentence2
 begin

 VERB_PHRASE:= structure returned by verb_phrase network

 if NOUN_PHRASE.ANIMATE = VERB_PHRASE.ANIMATE
 then begin

 SENTENCE.NOUN_PHRASE = NOUN_PHRASE
 SENTENCE.VERB_PHRASE = VERB_PHRASE
 end

 else fail

 end;
Parse "Dogs bite:
(TBD)
5. Build case frames to capture the concepts of studying for and taking exams Trace a parse and construct a semantic representation for the sentence "Bob studied hard and failed the exam."
Concepts:

[image: image4.wmf]animate

study

entity

agent

object

quality

level

[image: image5.wmf]animate

take_exam

subject

agent

area

result

grade

[image: image6.wmf]study

agent

quality

hard

Bob

take_exam

agent

result

fail

Bob

animate

study

entity

agent

object

quality

level

hard

1

2

3

fail

4

exam

5

animate

take exam

subject

agent

area

result

grade

5

1.

2.

3

4.

5.

6. Given the following relations in a database, extend the example in section 14.5.2 to handle queries of the form "Who advises Suzy Smith?" Show the semantic interpretation of the query, the ER diagrams from the database, and the expanded graph that results from their join.
Relation

Fields

student_rec

sname, gpa

faculty_rec

fname, field

advises

fname, sname
ER diagram (all that is needed):

[image: image7.wmf]fname

sname

advise

Conceptual graph for advising

[image: image8.wmf]fname

advise

sname

agent

student

Expanded graph:

[image: image9.wmf]fname: ?

advise

Suzy Smith

agent

student

advise

7. Add functions print_all_but_top to the stack ADT developed in class (stack.pro) and print_leaves to the tree ADT (tree1.pro). Include the test predicates and email me the complete code.

print_all_but_top([]).

print_all_but_top(S):-

 stack(Top, Rest, S),

 writelist(Rest).

% alternate:

print_all_but_top([Top|Rest]),

 writelist(Rest).

test1:- print_all_but_top([a]).

test2:- print_all_but_top([a,b,c,d,e,f]).

print_leaves([]).

print_leaves([Root]):- write(Root), nl.

print_leaves([Root, [], []]):- write(Root), nl.

print_leaves(Tree):-

 tree(Root, Left, Right, Tree),

 print_leaves(Left),

 print_leaves(Right).

test3:-print_leaves([a, [b], [c, [d], [e]]]).

test4:-print_leaves([a]).

8. Add prepositional phrases to nlp2.pro. See nlp3.pro
9. Add prepositional phrases to nlpcs.pro. See nlpcs2.pro.
10. Write the water jugs problem in Problem 10, Chapter 15, as a production system and translate to Prolog. See waterjugs.pro.
11. Problem 19, Chapter 14.

One answer (SH):
Visual wallpaper searching and extraction

Although general image search engines have been implemented which can interpret 2D information, it is still difficult to interpret these images as 3D objects. A simpler variation is to assume that all visual patterns are 2D (e.g. on flat surfaces), and interpret these images in that manner. Consider wallpaper: It can be accurately represented in 2D, and has a variety of patterns and colors.

The search functionality would consist of several components and steps:

1. Image sources – The search engine must have access to wallpaper samples from companies. All the companies need to provide is the images.

2. Pattern extraction templates – Templates should be created that specify image properties as a function of image data.

For example:

A template may output red as an image attribute if the image contains more red than other colors.

A template may output checkered if an image matches the Fourier transformation of a checkerboard pattern.

3. The customer specifies what attributes look for in wallpaper (e.g. blue and striped).

4. The search engine attempts to match desired attributes with images, and returns a list of the wallpaper candidates.

5. Additional information might also be aggregated in the previous step through text parsing or other methods if desired.

6. Users or testers could provide feedback information to the searcher which would be considered in future searches.

This pattern searching should be far more efficient than looking for paper by just name or color, and does not require any attribute list compiling by humans.

Another (OR)

I want to build an online information extraction system that will catalog open-source projects on the web. Most open-source projects on the web are linked to one or more of several larger database-driven sites like freshmeat.net, SourceForge.net, and OSDir.com, but there are many open-source projects that release code and programs under the GPL without alerting large websites.

The system would optimally use both semantic analysis and key-word search to find specific information on each project found. The information extractor would have the following template:

Name: (Name)

Version: (i.e. 1.2.3)

Description: (Most programs have a one-sentence tagline of what the program does)

Areas: (i.e. text-processing, graphic-conversion, database-structure etc.)

Language(s): (i.e. C, C++, Java, Perl,...)

OS: (Linux, Windows, Mac, web-based, Java)

Stage of Development: (if available; 0-100 incomplete to complete)

Method of Development: (if available; team or individual, method of communication)

Specs: (if available; concise description of various features)

_1227256282.bin

_1227258098.bin

_1227259275.bin

_1227259295.bin

_1227259229.bin

_1227256694.bin

_1227250818.bin

_1227255972.bin

_1227250768.bin

