CS 325 Chapter 7 Problems CS 325 2007
7.1
 A decomposition {R1, R 2} is a lossless-join decomposition if R1 R2 →R1 or R1 ∩ R2→R2.

 R1 R2 = A.
 1. A BC

 in F
 2. A ABC
1 and and augmentation with A
 Therefore R1 R2 →R1 and this is lossless
 Or, showing R1 ∩ R2→R2:

 1. A BC

in F
 2. B D

in F

 3. A D

1, 2 and pseudotransitivity

 4. A C

1 and decomposition

 5. A CD
3, 4 and union

 6. CD E

in F

 7. A E

5, 6, and pseudotransitivity

 8. A DE

3, 7, and union

 9. A ADE
8 and augmentation with A
7.2 A C B (and AB Cis implied)

7.3a. account customer, customeraccount
7.3b. account customer
7.4
1:
assumed

assumed

3:
by 1 and augmentation with =

4:
by =
5:
by 2 and augmentation with

6:
by 4, 5 and transitivity.

7.5
1:
assumed

2: (
assumed
3:
by 1 and augmentation with
4: (
by 2, 3 and transitivity.

7.6
1: A BC
given

2: CD E
given

3: B D
given

4: E A
given

(assume all rules from reflexivity (e.g BA augmentation and union
5: A B

1 and decomposition

6: A C
1 and decomposition

7: A D
3, 5 and trans

8: E B
 4, 5 and trans

9: E C
4, 6 and trans

10: A ABCDE

11: E ABCDE

12: B BD

13: CD A

2, 4 and transitivity

14: CD ABCDE
10, 13, and transitivity

15: E ABCDE
4, 10 and transitivity

16: BC CD

3 and augmentation

17: BC ABCDE
14, 16, and transitivity

Candidate keys: A, BC, CD, E

7.11
Short answer: CD E, B D are not in F'+
Argument that the dependency B → D is not preserved:

F1, the restriction of F to (A, B, C) is A → ABC, A → AB, A → AC, A → BC, A → B, A → C,
A → A, B → B, C → C, AB → AC, AB → ABC, AB → BC, AB → AB, AB → A, AB → B,
AB → C, AC (same as AB), BC (same as AB), ABC (same as AB).
F2, the restriction of F to (C, D, E) is A → ADE, A → AD, A → AE, A → DE, A → A, A → D,
A → E, D → D, E (same as A), AD, AE, DE, ADE (same as A).
(F1 U F2)+ does not contain B → D since the only FD in F1 U F2 with B as the left side is
B → B, a trivial FD.
Note that CD → ABCDE is also not preserved.

A simpler argument:

F1 contains no dependencies with D on the right side of the arrow.
F2 contains no dependencies with B on the left side of the arrow.
Therefore for B → D to be preserved there must be an FD B → α in F+ and α → D in F+
(so B → D would follow by transitivity).
Since the intersection of the two schemes is A, α = A.
B → A is not in F+ since B+ = BD.
7.17
· Repetition of information is when the values of one attribute are determined by the values of another attribute in the same relation, and both values are repeated throughout the relation. This is a bad relational database design because it increases the storage required for the relation and it makes updating the relation more difficult.

· Inability to represent information is when data exists on only a proper subset of the attributes in a relation. For example, in the Lending-schema of p. 259, a branch with no loans wouldn't appear in the relation unless all the loan attributes were filled in with nulls. This is bad relational database design because a tuple without the unrelated information cannot be inserted into the relation unless the nulls are added. It can also cause problems if the last tuple with the repeated information is deleted, forexample, leaving no information in Lending-scheme for the branch.
7.18 Functional dependencies are called trivial when they are satisfied by all relations. This doesn't add any information about desirable constraints on the data.
7.19
(((holds on R if and only if for any legal relations r(R), t1[(] = t2 [(] (t1[(] = t2 [(]

reflexivity: if (((, then (((
1. Let t1 and t2 be tuples such that t1[(] = t2 [(] (they agree on the attributes in ()

2. Since (((, t1[(] = t2 [(] (they agree on the attributes of ()
augmentation: if (((, then (((((
1. Let t1 and t2 be tuples such that t1[(] = t2 [(] (they agree on the attributes in ()
2. By (((, t1[(] = t2 [(] (they agree on the attributes of ()

3. Let t1 and t2 be tuples such that t1[((] = t2 [((]
4. By 2 they agree on (, by 3 they agree on (, thus they agree on the union ((and t1[((] = t2 [((]
transitivity: if (((, and (((, then (((

1. Let t1 and t2 be tuples such that t1[(] = t2 [(] (they agree on the attributes in ()

2. By (((, t1[(] = t2 [(] (they agree on the attributes of ()
3. By (((, t1[(] = t2 [(] implies t1[(] = t2 [(] (they agree on the attributes of ()

4. Hence t1[(] = t2 [(] implies t1[(] = t2 [(] and (((
7.20 In Figure 7.21, A C B but A C is not true
Or, consider (nams, class, dorm) with class dorm, name dorm, but not classdorm
7.21

assumed

2:
by reflexivity.

3:
by 2, 3, and transitivity.

7.22 BD

7.13 It is a canonical cover.
7.23
	A
	B
	C
	D
	E

	a1
	b1
	c1
	d1
	e1

	a2
	b2
	c1
	d2
	e2

With R1 =(A,B,C), R 2 =(C,D,E):
R1 =
	A
	B
	C

	a1
	b1
	c1

	a2
	b2
	c1

R 2 =
	C
	D
	E

	c1
	d1
	e1

	c1
	d2
	e2

R1 |x| R 2 =

	A
	B
	C
	D
	E

	a1
	b1
	c1
	d1
	e1

	a1
	b1
	c1
	d2
	e2

	a2
	b2
	c1
	d1
	e1

	a2
	b2
	c1
	d2
	e2

Therefore, this is a lossy join.
7.24 Three design goals:
1. BCNF (no repetion of information)

2. Lossless join decomposition (can reconstruct the original relations)

3. Dependency preservation (can check that updates satisfy dependencies without a join)

7.25 super keys are A, BC, CD, E so the only dependency to decompose on is B D

 ABCDE

 use B D

ABCE

 BD

It's not dependency preserving (CD E).
7.26 To preserve functional dependencies (and not need a join to check that updates preserve them)

7.27: It is already in 3NF, but the algorithm allows us to decompose it further:

 R1 = (A, B, C)

 R2 = (C, D, E)

 R3 = (B, D)

 R4 = (A, E)

 R1 contains a candidate key, so we are done.

