Chapter 7 Summary
CS 325 Spring 2009
1. The functional dependency

 (((
holds on R if and only if for any legal relations r(R), when any two tuples t1 and t2 of r agree on the attributes (, they also agree on the attributes (:

 t1[(] = t2 [(] (t1[(] = t2 [(]
2. F+: the closure of F,
3. Fc: a canonical cover

4. A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F+ of the form

 ((((, where ((R and ((R,
at least one of the following holds:

· ((((is trivial (i.e., ((()

· (is a superkey for R
5. BCNF algorithm (slide 41) lengthy because it uses F+
 result := {R };
 done := false;
 compute F +;
 while (not done) do

if (there is a schema Ri in result that is not in BCNF)

 then begin

let (((be a nontrivial functional dependency that holds

 on Ri such that ((Ri is not in F +, and (((= (;

 result := (result – Ri) ((Ri – () (((, ();

 end

else done := true;

6. A decomposition of R into R1 and R2 is a lossless join if for all possible relations r
 on schema R

r = (R1 (r) |X| (R2 (r)

7. A decomposition of R into R1 and R2 is dependency preserving wrt F if the
 restriction of F to the decomposed relations can generate all of F
8. One can get a BCNF decomposition that is a lossless join but not necessarily
 dependency-preserving. Therefore we have a weaker normal form, 3NF
9. Relation schema R is in third normal form (3NF) if for all:

(((in F+

 at least one of the following holds:

· (((is trivial (i.e., ((()

· (is a superkey for R
· each attribute A in (– (is contained in a candidate key for R.

 (each attribute may be in a different candidate key)
10. 3NF algorithm (slide 44)
Let Fc be a canonical cover for F;
i := 0;
for each functional dependency (((in Fc do
 if none of the schemas Rj, 1 (j (i contains ((
 then begin

i := i + 1;

Ri := ((
 end
if none of the schemas Rj, 1 (j (i contains a candidate key for R
 then begin

i := i + 1;

Ri := any candidate key for R;
 end
return (R1, R2, ..., Ri)

11. Functional dependency theory supposed to make this clearer

 a. Condition for lossless join: a decomposition of R into R1 and R2 is lossless join if

 and only if at least one of the following dependencies is in F+:
· R1 (R2 (R1

· R1 (R2 (R2
 b. Condition for dependency preservation: Let Fi be the set of dependencies F + that
 include only attributes in Ri. A decomposition is dependency preserving if
· (F1 (F2 (… (Fn)+ = F +
 c. Attribute closure allows us to do BCNF with just Fc:
· But: for every set of attributes ((Ri, check that (+ (the attribute closure of () either includes no attribute of Ri- (, or includes all attributes of Ri.
· If there were such an (((on one of the Ri, decompose on it.
