Chapter 4 Solutions
4.1

1. Anti-lock braking system: Safety-critical system so method based on formal transformations with proofs of equivalence between each stage. Realistically: waterfall since it should be specified accurately before starting.
 Another perspective: this has been done before so that reuse applies.

2. Virtual reality system: System whose requirements cannot be predicted in advance so an exploratory programming model such as evolutionary is appropriate.
3. University accounting system: System whose requirements should be stable because of existing system therefore waterfall model is appropriate. Reuse might also be appropriate if there are good existing components.
4. Interactive timetable: System with a complex user interface but which must be stable and reliable. Could be based on throw-away prototyping to find requirements then either incremental development or waterfall model.

4.2 Since the process is not visible, documentation may be inadequate; the software may be constructed without proper design; changes are harder to track.
4.6 (optional)

[image: image1.wmf]broken

down to

System

Architecture

Sub System

Name

Interface

spec

interfaces

with

SW

Design

Data Struct

Spec

Algorithm

Spec

uses

uses

uses

4.9

1. The hardware it interfaces will evolve. For example, increases in communications bandwidth mean that more information is available.
2. User functions will change. For example, radar operators no longer look at a PPI display.
3. Laws will change. For example, privacy laws have changed how personal information must be handled.
4.12 No. Historically, we have always wanted/tried to build systems that are at the edge of current hardware/software capabilities. Better tools will help us and suggest even more to do.
Computers were projected to cause unemployment, for example of the rooms of women who did manual calculation of ballistics tables for WWII. They have clearly created more jobs than were lost.
_1139718945.bin

