
CS 132 EXAM 2 MAY 7, 2007
1. True or false:
a. T Heap sort and quick sort are both O(n log n). n refers to the number of elements in the array
b. T A stack is a LIFO data structure.
c. F The middle elements of a queue are often accessed directly.
d. T Elements are added to the rear of a queue.
e. T Postfix notation does not require parentheses to enforce operator precedence.
f. F A node of a binary tree has two or more links in it.
2. Omit three of the following.
a. What do binary search trees and heaps have in common? What makes them different?
Both are binary trees. In the search tree, each node is larger than all nodes in its left subtree and smaller than all nodes in its right subtree. In the heap, each node is larger than all nodes in its left subtree and all nodes in its right subtree.
b. Is there an O(1) search? If so describe.
Yes, hashing where a function is applied to the search key that computes the address of the record,
c. Is a binary search tree ever a heap? If so, when?
Only when it it a single node or when it is a root node with one node as left child
[image: image7.wmf]12

3

90

14

5

7

d. In your view, what are the main advantage and the main disadvantage of recursion?
Advantage: easier to understnad the algorithm, easier to code.
 Disadvantage: takes more memory and sometimes more time. harder to learn(?)
e. Convert (a * b – (c / d) / (e + f)) to postfix notation a b * c d / e f + / -
f. Write (a * b – (c / d) / (e + f)) as a binary expression tree

[image: image2.wmf]/

+

/

/

*

a

b

f

e

d

c

g. Comment on Zahra's talk

h. Comment on Shea's talk
3. Show the results of the first two iterations of sorting for the following data for 2 of the sorts (omit one).

 4 1 11 8 22 4 7 14

 [0] [1] [2] [3] [4] [5] [6] [7]

a. insertion sort:

 1 4 11 8 22 4 7 14
 [0] [1] [2] [3] [4] [5] [6] [7]

 1 4 4 8 22 11 7 14
 [0] [1] [2] [3] [4] [5] [6] [7]

 (or the same as step 1 since the second smallest is in the right place)
b. selection sort

 1 4 11 8 22 4 7 14
 [0] [1] [2] [3] [4] [5] [6] [7]

 1 4 8 11 22 4 7 14
 [0] [1] [2] [3] [4] [5] [6] [7]

c. quick sort

 1 4 11 8 22 4 7 14
 [0] [1] [2] [3] [4] [5] [6] [7]

 pivot

 1 4 8 4 7 11 22 14
 [0] [1] [2] [3] [4] [5] [6] [7]

 ok pivot1 pivot2
Use the following for questions 4 and 5. It is unnecessary to check for full or empty queue in function bodies.
class queueType

{

public:

 const queueType<Type>& operator=(const queueType<Type>&);

 bool isEmptyQueue();

 bool isFullQueue();

 void initializeQueue();

 void destroyQueue();

 Type front();

 Type back();

 void addQueue(const Type& queueElement);

 void deleteQueue();
 void printQueue();
 queueType(int queueSize = 100);

 queueType(const queueType<Type>& otherQueue);

 ~queueType();

private:

 int maxQueueSize;

 int count;

 int queueFront;

 int queueRear;

 Type *list;

};
4. Write code to do the following

a. Declare aQueue to be a queue with space for 50 characters.
 queueType<char> aQueue(50);
b. Add A and B to aQueue
aQueue.addQueue('A');
aQueue.addQueue('B');
c. Print the first element of aQueue
cout << aQueue.front();
d. Remove the first element of aQueue

 aQueue.deleteQueue();
5. Fill in the following bodies
a. template<class Type>

 bool queueType<Type>::isFullQueue()

 {

 return (count==manQueueSize);
 }
b. template<class Type>
 Type queueType<Type>::front()

 {

 return list[queueFront]
 }
c. template<class Type>
 void queueType<Type>::addQueue(const Type& newElement)

 {
 queueRear = (queueRear + 1) % maxQueueSize;

 count++;

 list[queueRear] = newElement;

 }
6. The movie simulation contains classes for customerType, serverType, an array of servers (serverList), and a queue of customers (waitQueue) waiting for the first available server in a grocery store. Describe the changes you would make in classes you would use and new functions in existing classes for two of the following separate options (omit one).
a. Each server has a line in front of him/herself and customers join the shortest line when they arrive.

Option 1: an array of waitQueues.
Option2: add a waitQueue to the private component of serverType
Add a function that returns the index of the shortest queue
b. The number of servers changes with servers coming on and off duty.
Option 1: A linked list of serverType
Option 2: a boolean component in serverList to indicate whether the server is on or off dut
c. There is one line for customers with fewer than 10 items and one for customers with more than 10 items.
Two waitQueues, one for fewer than 10 items, the second for more than 10 items.
When a customer arrives, a random number generates the number of items and s/he is added to the appropriate queue.

Possibly add a private compoenent to customer for the number of items.

If there are multiple servers for each type of customer, there would be a serverList for each. The main program would then have to check each serverList for a vacant server each clock period.
7. Fill in the bodies and helper functions for the following functions from binaryTreeType.

template <class elemType>

class binaryTreeType

{

public:

 const binaryTreeType<elemType>& operator=(const binaryTreeType<elemType>&);

 bool isEmpty();

 void inorderTraversal();

 void preorderTraversal();

 void postorderTraversal();

 int treeHeight();

 int treeNodeCount();

 int treeLeavesCount();

 void destroyTree();

 binaryTreeType(const binaryTreeType<elemType>& otherTree);

 binaryTreeType();

 ~binaryTreeType();

protected:

 nodeType<elemType> *root;

private:
 int recTreeNodeCount(nodeType<elemType> *p);

};
template<class elemType>

binaryTreeType<elemType>::isEmpty()

{

 return (root==NULL);
}

template<class elemType>
int binaryTreeType<elemType>::treeNodeCount()
{
 return recTreeNodeCount(root);
}

template<class elemType>
int binaryTreeType<elemType>::recTreeNodeCount(nodeType<elemType> *p);
{
 if(9==NULL)
 return 0;

 else

 return 1 + recTreeNodeCount(p->llink) + recTreeNodeCount(p->rlink);
}

7. a. Show the binary search tree that will result if the following elements are added in the order they
 appear: 7 12 3 90 14 5 (7 is added to the tree first, 12 second,...).

[image: image3.wmf]7

14

90

5

12

3

b. The output of inorder traversal is: 3 5 7 12 14 90
8. a. Build a heap from 7 12 3 90 14 5 using either of the methods discussed in class
 (show the tree structure).

[image: image4.wmf]90

7

3

12

5

14

 b. Show how your heap would be represented in an array.

 90 14 5 7 12 3

 [0] [1] [2] [3] [4] [5]

 c. Show the first two iterations of heap sort on your heap (in the array or tree format).

 Iteration 1:

Iteration 2:

[image: image1]
[image: image5.wmf]14

7

90

13

5

12

� EMBED Actrix.Document.1 ���

1

3

PAGE
1

[image: image6.wmf]12

3

90

14

5

7

_1240141023.bin

_1240141260.bin

_1240141479.bin

_1240141195.bin

_1240059818.bin

