
CS 132 EXAM 2 MAY 7, 2007
1. True or false:
a. ___ Heap sort and quick sort are both O(n log n). n refers to _________________________

b. ___ A stack is a LIFO data structure.
c. ___The middle elements of a queue are often accessed directly.
d. ___ Elements are added to the rear of a queue.
e. ___ Postfix notation does not require parentheses to enforce operator precedence.
f. ___ A node of a binary tree has two or more links in it.
2. Omit three of the following.
a. What do binary search trees and heaps have in common? What makes them different?
b. Is there an O(1) search? If so describe.
c. Is a binary search tree ever a heap? If so, when?
d. In your view, what are the main advantage and the main disadvantage of recursion?
Advantage:
 Disadvantage:
e. Convert (a * b – (c / d) / (e + f)) to postfix notation
f. Write (a * b – (c / d) / (e + f)) as a binary expression tree
g. Comment on Zahra's talk

h. Comment on Shea's talk
3. Show the results of the first two iterations of sorting for the following data for 2 of the sorts (omit one).

 4 1 11 8 22 4 7 14

 [0] [1] [2] [3] [4] [5] [6] [7]

a. insertion sort:

 ___ ___ ___ ___ ___ ___ ___ ___

 [0] [1] [2] [3] [4] [5] [6] [7]

 ___ ___ ___ ___ ___ ___ ___ ___

 [0] [1] [2] [3] [4] [5] [6] [7]

b. selection sort

 ___ ___ ___ ___ ___ ___ ___ ___

 [0] [1] [2] [3] [4] [5] [6] [7]

 ___ ___ ___ ___ ___ ___ ___ ___

 [0] [1] [2] [3] [4] [5] [6] [7]

c. quick sort

 ___ ___ ___ ___ ___ ___ ___ ___

 [0] [1] [2] [3] [4] [5] [6] [7]

 ___ ___ ___ ___ ___ ___ ___ ___

 [0] [1] [2] [3] [4] [5] [6] [7]

Use the following for questions 4 and 5. It is unnecessary to check for full or empty queue in function bodies.
class queueType

{

public:

 const queueType<Type>& operator=(const queueType<Type>&);

 bool isEmptyQueue();

 bool isFullQueue();

 void initializeQueue();

 void destroyQueue();

 Type front();

 Type back();

 void addQueue(const Type& queueElement);

 void deleteQueue();
 void printQueue();
 queueType(int queueSize = 100);

 queueType(const queueType<Type>& otherQueue);

 ~queueType();

private:

 int maxQueueSize;

 int count;

 int queueFront;

 int queueRear;

 Type *list;

};
4. Write code to do the following

a. Declare aQueue to be a queue with space for 50 characters.
b. Add A and B to aQueue
c. Print the first element of aQueue
d. Remove the first element of aQueue

5. Fill in the following bodies
a. template<class Type>

 bool queueType<Type>::isFullQueue()

 {

 }
b. template<class Type>
 Type queueType<Type>::front()

 {

 }
c. template<class Type>
 void queueType<Type>::addQueue(const Type& newElement)

 {
 }
6. The movie simulation contains classes for customerType, serverType, an array of servers (serverList), and a queue of customers (waitQueue) waiting for the first available server in a grocery store. Describe the changes you would make in classes you would use and new functions in existing classes for two of the following separate options (omit one).
a. Each server has a line in front of him/herself and customers join the shortest line when they arrive.

b. The number of servers changes with servers coming on and off duty.
c. There is one line for customers with fewer than 10 items and one for customers with more than 10 items.
Fill in the bodies and helper functions for the following functions from binaryTreeType.

template <class elemType>

class binaryTreeType

{

public:

 const binaryTreeType<elemType>& operator=(const binaryTreeType<elemType>&);

 bool isEmpty();

 void inorderTraversal();

 void preorderTraversal();

 void postorderTraversal();

 int treeHeight();

 int treeNodeCount();

 int treeLeavesCount();

 void destroyTree();

 binaryTreeType(const binaryTreeType<elemType>& otherTree);

 binaryTreeType();

 ~binaryTreeType();

protected:

 nodeType<elemType> *root;

private:
 int recTreeNodeCount(nodeType<elemType> *p);

};
template<class elemType>

binaryTreeType<elemType>::isEmpty()

{

}

template<class elemType>
int binaryTreeType<elemType>::treeNodeCount()
{
}

template<class elemType>
int binaryTreeType<elemType>::recTreeNodeCount(nodeType<elemType> *p);
{
}

7. a. Show the binary search tree that will result if the following elements are added in the order they
 appear: 7 12 3 90 14 5 (7 is added to the tree first, 12 second,...).

b. The output of inorder traversal is:
8. a. Build a heap from 7 12 3 90 14 5 using either of the methods discussed in class
 (show the tree structure).

 b. Show how your heap would be represented in an array.

 c. Show the first two iterations of heap sort on your heap (in the array or tree format).

PAGE
6

