
Planning with Ill-defined Resources

Laurence A. Kramer

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
lkramer@cs.cmu.edu

Abstract
Many real world planning problems involve resources that
may not be completely specified at the time of plan
generation and that may be utilized opportunistically during
plan execution. What is needed in addressing such problems
is the ability to reason about hypothetical resources and to
generate bounds for other resources to ensure feasible
choices during plan execution. We present a slight twist to
the well known "travel domain" and a solution model to
illustrate this point.

Introduction

Perhaps second only to the (in)famous "blocks world"
problem as a demonstration domain for planning engines is
the "travel domain." The travel domain has taken many
incarnations, but in essence involves an agent that needs to
get from point A to point B, and must choose from several
means of transport to do so. We investigate the scenario
where the planning agent would like to travel across town,
and may do so by either walking, taking a taxi, taking a
bus, or some combination of these modes of transportation.
This problem is handled in a straightforward manner by
any number of planners, but becomes somewhat more
difficult by introducing limited resources such as money
and walking distance. We consider the further
complication -- quite common in the real world -- that at
plan generation time the location of taxis is unknown. The
plan(s) we generate should give the agent foreknowledge,
for instance, that if they start walking and hail a cab too
early, they may end up having to walk again when their
money runs out. The generated plan, then, gives the agent
the tools to be able to operate opportunistically in response
to changing real world conditions.

A Simple Travel Domain
 (Nau et al. 1999) describe a simple transportation planning
domain to demonstrate the workings of the SHOP planner.
In this domain the planning agent is downtown and would
like to either travel to the park or the suburb. The initial
state of the world is specified in terms of how much money
the agent has, whether the weather is bad or good, and the
locations of bus routes and taxi stands. If the weather is

good the agent can travel 3 miles, but if it is bad the agent
can travel 0.5 mile. The bus costs a flat rate of $1.00, and a
taxi costs $1.00 per mile plus a constant $1.50. Figure 1
presents the full SHOP model for this domain and Figure 2
an example initial state of the world. SHOP syntax for
axioms, methods and operators is explained fully in (Nau et
al. 2000). Briefly, the axioms are represented as Horn
clauses, the methods as tasks, preconditions, and task lists,
and the operators as tasks, and add and delete lists.

A1 (:- (have-taxi-fare ?distance)
 ((have-cash ?m)
 (eval (>= ?m (+ 1.5 ?distance)))))
A2 (:- (walking-distance ?u ?v)
 ((weather-is ’good)
 (distance ?u ?v ?w)
 (eval (<= ?w 3)))
 ((distance ?u ?v ?w)
 (eval (<= ?w 0.5))))
M1 (:method (pay-driver ?fare)
 ((have-cash ?m)
 (eval (>= ?m ?fare)))
 ‘((!set-cash ?m ,(- ?m ?fare))))
M2 (:method (travel-to ?q)
 ((at ?p) (walking-distance ?p ?q))
 ’((!walk ?p ?q)))
M3 (:method (travel-to ?y)
 (:first (at ?x)
 (at-taxi-stand ?t ?x)
 (distance ?x ?y ?d)
 (have-taxi-fare ?d))
 ‘((!hail ?t ?x) (!ride ?t ?x ?y)
 (pay-driver ,(+ 1.50 ?d)))
 ((at ?x) (bus-route ?bus ?x ?y))
 ‘((!wait-for ?bus ?x)
 (pay-driver 1.00)
 (!ride ?bus ?x ?y)))
O1 (:operator (!hail ?vehicle ?location)
 ()
 ((at ?vehicle ?location)))
O2 (:operator (!wait-for ?bus ?location)
 ()
 ((at ?bus ?location)))
O3 (:operator (!ride ?vehicle ?a ?b)
 ((at ?a) (at ?vehicle ?a))
 ((at ?b) (at ?vehicle ?b)))
O4 (:operator (!set-cash ?old ?new)
 ((have-cash ?old))
 ((have-cash ?new)))
O5 (:operator (!walk ?here ?there)
 ((at ?here))
 ((at ?there)))

Figure 1: SHOP Simple Transportation-planning Domain

((distance downtown park 2)
 (distance downtown uptown 8)
 (distance downtown suburb 12)
 (at-taxi-stand taxi1 downtown)
 (at-taxi-stand taxi2 downtown)
 (bus-route bus1 downtown park)
 (bus-route bus2 downtown uptown)
 (bus-route bus3 downtown suburb)
 (at downtown)
 (weather-is ’good)
 (have-cash 12))

Figure 2: Example world state for Transportation-planning

By varying the initial conditions it is seen that SHOP is
able to generate a number of feasible plans to travel to the
park, uptown or the suburb. Given the ability to embed
Lisp code in the axioms and methods of the model, SHOP
is able to "reason" about limited resources such as money
and the ability to walk certain distances.

Travel in the Real World
The SHOP simple travel domain model was never intended
to demonstrate travel planning in the real world, but it is
interesting to prod the model to see what it would take to
make it more lifelike. First of all, it is quite common in the
real world that you may not have enough money to take a
taxi all the way across town, but you could take a taxi part
way and take the bus the remainder. Or, you could plan to
walk part of the way, and then catch a taxi. The SHOP
model in Table 1 is not powerful enough to solve this
problem.

Looking at methods M2 and M3 in Figure 1, the
assumption is that the planning agent is always at one
location trying to get directly to another location. In order
to solve this problem we add M4 (see Figure 3) which
states that to get from location1 to location3, travel to
location2 and then to location3.

M4 (:method (travel-to ?loc3)
 ((at ?loc1)
 (distance ?loc1 ?loc2 ?dist1)
 (distance ?loc2 ?loc3 ?dist2))
 ’((travel-to ?loc2) (travel-to ?loc3)))

Figure 3: A method for traveling indirectly

With the addition of M4, SHOP is able to solve the
problem in Figure 4, where the goal is (travel-to park).

((distance downtown park 2)
 (distance uptown downtown 8)
 (distance downtown suburb 12)
 (at-taxi-stand taxi1 uptown)
 (at-taxi-stand taxi2 downtown)
 (bus-route bus1 downtown park)
 (bus-route bus2 uptown downtown)
 (bus-route bus3 downtown suburb)
 (at uptown)
 (weather-is ’good)
 (have-cash 11)))

Figure 4: A travel domain that requires two modes of
transportation.

The following two plans are generated:

((!HAIL TAXI1 UPTOWN)
 (!RIDE TAXI1 UPTOWN DOWNTOWN)
 (!SET-CASH 11 1.5)
 (!WAIT-FOR BUS1 DOWNTOWN)
 (!SET-CASH 1.5 0.5)
 (!RIDE BUS1 DOWNTOWN PARK))

((!HAIL TAXI1 UPTOWN)
 (!RIDE TAXI1 UPTOWN DOWNTOWN)
 (!SET-CASH 11 1.5)
 (!WALK DOWNTOWN PARK))

Real World Taxis are Different than Buses
To represent many real world cities the model we have
built is still too contrived. Taxi stands are few and far
between or nonexistent. The model of waiting at a taxi
stand for a taxi as you would wait at a bus stop for a bus, is
not the one we want. Somehow we’d like to represent the
idea that just as the distances one can walk don’t fall into a
set of discrete bins, it might be possible to flag a cab just
about anywhere and get off anywhere.

Given this insight, we propose a planning domain that is
initially simpler than the one we’ve been considering, but
which is more true to life. In this domain we are uptown
and would like to get to the park. We have some money,
but not enough to take a taxi all the way. Depending on the
weather, we are able to walk a certain distance, but not all
the way from uptown to the park. We would like to
generate a feasible plan to get to the park if one exists. The
world state for this problem is represented in Figure 5, and
the goal is (travel-to park).

((distance uptown park 10)
 (at uptown)
 (weather-is ’good)
 (good-weather-distance 3)
 (bad-weather-distance 0.5)
 (have-cash 10))

Figure 5: A simplified, but lifelike planning domain.

The “Hail a Cab” Domain
It is not difficult to see that unless the amount of money we
have is just enough to take a taxi to the limit of the distance
we’re able to walk, there is either no solution to the
problem or an infinite number of solutions, since the
distance we can walk is a continuous resource. In reality,
taxi meters only turn over at regular intervals, so we could
enumerate solutions corresponding to those discrete
intervals, however the number of possible solutions could
still be huge.

Another way to look at this problem, though, is to design
a model such that we plan for the boundary solutions, and
at plan execution time we can be assured that any of the
myriad solutions between these bounds will be feasible
ones.

The “Hail a Cab” Model

Corresponding to our intuition, then, we would like to build
into our model the ability to generate two hypothetical
waypoints during the planning process, call them
waypoint1 and waypoint2. Given the simplicity of our
starting world state, we expect that the planner will either
fail to find a plan, or will generate exactly two plans: one at
the limit of our money to waypoint1 and one at the limit of
our walking distance to waypoint2.

After some trial and error we were able to represent such
a model in SHOP. We reuse the model (Figure 1) from the
simple travel domain (with a few improvements to make it
more maintainable) and add an "assert" operator O6 as
described in (Nau et al. 2000). The assert operator has no
delete-list, and adds all of it’s arguments to the current
world state. During planning we assert the existence of
waypoints, and their distance from an origin and
destination.

Two new planning methods M5, M6 are added to
represent the “take the taxi to the extreme” and the “walk to
the extreme” actions. In addition, we found it necessary to
add an axiom A5 which filtered waypoints from non
waypoints. Before addition of this axiom, the planner
would thrash while attempting to travel between the two
hypothetical waypoints or add an ever increasing number
of new waypoints between the original ones. The full
model for the "hail a cab" domain is listed in figure 6.

;;****** AXIOMS ******

;; Fetch the max walking distance from the
;; database depending on whether the weather is ;;
bad or good.
A1 (:- (possible-walking-distance ?wd)
 ((weather-is ’good)
 (good-weather-distance ?wd))
 ((bad-weather-distance ?wd)))

;; Two points are within walking distance if
;; distance is less than possible walking
;; distance.
A2 (:- (within-walking-distance ?u ?v)
 ((distance ?u ?v ?w)
 (possible-walking-distance ?wd)
 (eval (<= ?w ?wd))))

;; A taxi costs $1.50 + $1.00/mile
A3 (:- (have-taxi-fare ?distance)
 ((have-cash ?m)
 (eval (>= ?m (+ 1.5 ?distance)))))

;; It’s worth considering a taxi only if you have
;; at least the $1.50 fixed rate, plus another
;; $.50 to go a half mile (we can assume the
;; taxi’s meter clicks over every half mile).
A4 (:- (worth-considering-taxi ?m)
 ((have-cash ?m) (eval (>= ?m 2.0))))

;; This helper axiom is needed to restrict the
;; search from attempting to travel from one
;; waypoint to another.
A5 (:- (not-waypoint ?w)
 ((not (is-waypoint ?w))))

;;****** METHODS ******

;; Paying the driver reduces your cash on hand by
;; the fare.
M1 (:method (pay-driver ?fare)
 ((have-cash ?m) (eval (>= ?m ?fare)))
 ‘((!set-cash ?m ,(- ?m ?fare))))

;; Attempt to walk.
M2 (:method (travel-to ?q)
 ((at ?p)
 (within-walking-distance ?p ?q))
 ’((!walk ?p ?q)))

;; Attempt to take a taxi.
M3 (:method (travel-to ?y)
 ((at ?x)
 (distance ?x ?y ?d)
 (have-taxi-fare ?d))
 ‘((!hail taxi ?x) (!ride taxi ?x ?y)
 (pay-driver ,(+ 1.50 ?d))))

;; Taking a taxi "script."
;; Only to be used when it is certain that
;; preconditions for taking a taxi are satisfied.
M4 (:method (take-taxi ?x ?y ?m)
 ()
 ‘((!hail taxi ?x) (!ride taxi ?x ?y)
 (pay-driver ,?m)))

;; Attempt to combine taking one form of
;; transportation with another by hypothesizing a
;; waypoint, waypoint1. This waypoint represents
;; spending all your money on a taxi, and then
;; traveling the rest of the way by some other
;; means.
M5 (:method (travel-to ?z)
 ((not-waypoint ?z)
 (worth-considering-taxi ?m)
 (at ?x) (not-waypoint ?x)
 (distance ?x ?z ?dist))
 ‘((!assert
 ((is-waypoint waypoint1)
 (distance ?x waypoint1
 ,(- ?m 1.50))
 (distance waypoint1 ?z
 ,(- ?dist ?m -1.50))))
 (take-taxi ?x waypoint1 ?m)
 (travel-to ?z)))

;; Attempt to combine taking one form of
;; transportation with another by hypothesizing a
;; waypoint, waypoint2. This waypoint represents
;; traveling as far as you can walk, and then
;; taking the taxi (or another means) from that ;;
point.
M6 (:method (travel-to ?z)
 ((not-waypoint ?z)
 (at ?x) (not-waypoint ?x)
 (distance ?x ?z ?dist)
 (possible-walking-distance ?wd))
 ‘((!assert
 ((is-waypoint waypoint2)
 (distance ?x waypoint2 ,?wd)
 (distance waypoint2 ?z
 ,(- ?dist ?wd))))
 (!walk ?x waypoint2)
 (travel-to ?z)))

;;****** OPERATORS ******

;; Operators O1-05 are the same as in Figure 1
O6 (:operator (!assert ?g)
 ()
 ?g
 0))) ;zero-cost to apply

Figure 6: “Hail a Cab” Model

Given the start state in Figure 5, and the goal of (travel-to
park) SHOP was able to find the following two plans.
(Execution time was 0.010 cpu seconds on a Sun Ultra 1
running Allegro Common Lisp 5.0.1).

((!ASSERT ((IS-WAYPOINT WAYPOINT2)
 (DISTANCE UPTOWN WAYPOINT2 3)
 (DISTANCE WAYPOINT2 PARK 7)))
 (!WALK UPTOWN WAYPOINT2)
 (!HAIL TAXI WAYPOINT2)
 (!RIDE TAXI WAYPOINT2 PARK)
 (!SET-CASH 10 1.5))

((!ASSERT ((IS-WAYPOINT WAYPOINT1)
 (DISTANCE UPTOWN WAYPOINT1 8.5)
 (DISTANCE WAYPOINT1 PARK 1.5)))
 (!HAIL TAXI UPTOWN)
 (!RIDE TAXI UPTOWN WAYPOINT1)
 (!SET-CASH 10 0)
 (!WALK WAYPOINT1 PARK))

From this result we can see that any plan where we walk at
least 1.5 miles and at most 3 miles will be a feasible one.
Having access to the plan in terms of two boundary
solutions allows an intelligent agent to act opportunistically
when executing the plan (hailing a cab at the most
opportune time). Alternatively, these plan bounds could be
handed off to a scheduler that may better deal with the
optimization problem of trading off conserving money,
conserving walking power, and other factors.

Critique of this Approach
Although we were successful in modeling the "Hail a Cab"
problem and generating plans for it, it is far from being a
satisfactory solution. First of all, the model is very
specifically crafted to solve this particular problem.
Although the model still performs relatively well when we
add a number of the locations and modes of travel that
were present in the original model, we found that
sometimes the plans produced were very counter-intuitive,
for instance involving travel to "intermediate" waypoints
that were actually further than the overall distance to the
goal location, thus resulting in negative distances.
Although negative distances can be interpreted as a less
than optimal plan, where some physical "backtracking" is
taking place, it is probably preferred that these plans not be
generated.

Adding axioms and additional preconditions to some
methods succeeded in avoiding these "negative distance"
solutions, however it took quite a level of effort to produce
a model that generated all feasible plans without getting
stuck in an endless loop.

This can be taken as a criticism of the modeling
paradigm in SHOP, or it can be ascribed to the novice
status of this author in working with the SHOP modeling
language.

In any case, it seems that a more desirable approach to
this problem would allow us to deal with it at a higher level
of abstraction. For instance, it would be nice to be able to
just specify that a taxi is a type of resource that behaves in

a certain way, and have the planner be able to reason with
the attributes of that resource type. This is the sort of
capability that SIPE advertises (Wilkins 88), and it would
be interesting to see a SIPE model for the "Hail a Cab"
domain. In addition, it would be nice to model “waypoints”
as a generic type of unfixed location resource, as opposed
to hard-coding two waypoints in the domain model.

Future Work: Extensions to the Domain
The “hail a cab domain” attempts to capture some of the
complexity and uncertainty of catching a cab in a real
world city. There are a number of dimensions along which
it could be extended to make it even more lifelike and
challenging. A few that come to mind are:

Time Limits. Quite often it’s important to get across town
before some deadline. Add in timing considerations to the
model.

Restrictions on Origins and Destinations. It’s not
possible to take a cab anywhere, and in most cities there are
places you wouldn’t want to be dropped off by a cab, just
for safety’s sake. Similarly, there are locations where it is
not likely to catch a cab. Factor location constraints into the
model.

Replanning. Often the weather can quickly change from
good to bad. Does this necessitate replanning from scratch,
or is it possible to build some look-ahead into the model?

Constraint Relaxation. In the real world we’d never stop
walking in bad weather one block away from where we
saw a cab, simply because we’d reached our “bad weather
walking limit.” What’s a good way to relax this and other
constraints?
Benchmark Problems for Real World Planning
In (Wilkins and desJardins 2001) the authors claim that
benchmark problems for planning either ignore or filter out
many of the qualities that typify real world planning
problems, thus causing research to tend in nonproductive
directions. We agree that this is a danger, but feel that a
place remains for benchmark problems which test the
adequacy of a planner to handle real world problems, even
if these tests make some simplifying assumptions along one
or more dimensions.

We present the "Hail a Cab" problem as a challenge
problem for other planners to tackle. We propose the
following additional metrics (besides execution time) with
which to evaluate solutions to the problem:

Expressivity. Does the model express the problem in a
full and intuitive way?
Extensibility. Is the model easily extensible to new real
world requirements or along new dimensions?
Maintainability. How hard is the model to develop, debug
and improve over time?
Scalability. How does the model scale in performance as
the problem grows in the number of variables? Are there
natural ways to apply heuristics to mitigate scalability

problems? How long does it take for the planner to fail to
find a plan when there is none?

These metrics, except for possibly the last, are hard to
quantify, but evaluating them for benchmark problems for
real world planning can drive research in interesting and
productive directions.

Conclusions
Investigating the "Hail a Cab" model suggests solution
approaches for planning and scheduling in real world
transportation domains where differing modes of
transportation may be employed to achieve the goal of
getting from an origin to a destination. Features of this
model include the generation of hypothetical waypoints
during plan generation, and reasoning about time bounds
for non homogeneous actions. Providing these bounds can
help ensure execution of a feasible plan. We feel that this
model can serve as a useful test bed for real world planners.

Acknowledgements

We thank David Hildum for insights into a successful
solution to this problem, and Dana Nau and his
collaborators for making the SHOP planner freely available
to others in the community.

References

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple Hierarchical Ordered Planner, Technical
Report, CS-TR-3981, UMIACS-TR-9904, Department Of
Computer Science, and Institute for Systems Research,
University of Maryland.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 2000.
SHOP and M-SHOP: Planning with Ordered Task
Decomposition, Technical Report, CS-TR-4157,
Department Of Computer Science, and Institute for
Systems Research, University of Maryland.

Wilkins, D. 1988. Practical Planning: Extending the
Classical AI Paradigm. San Mateo, CA: Morgan
Kaufmann Publishers.

Wilkins, D. and desJardins, M. 2001. A Call for
Knowledge-Based Planning. AI Magazine 22(1):99-115.

