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Abstract 
Many real world planning problems involve resources that 
may not be completely specified at the time of plan 
generation and that may be utilized opportunistically during 
plan execution.  What is needed in addressing such problems 
is the ability to reason about hypothetical resources and to 
generate bounds for other resources to ensure feasible 
choices during plan execution.  We present a slight twist to 
the well known "travel domain" and a solution model to 
illustrate this point. 

Introduction  

Perhaps second only to the (in)famous "blocks world" 
problem as a demonstration domain for planning engines is 
the "travel domain."  The travel domain has taken many 
incarnations, but in essence involves an agent that needs to 
get from point A to point B, and must choose from several 
means of transport to do so.  We investigate the scenario 
where the planning agent would like to travel across town, 
and may do so by either walking, taking a taxi, taking a 
bus, or some combination of these modes of transportation. 
This problem is handled in a straightforward manner by 
any number of planners, but becomes somewhat more 
difficult by introducing limited resources such as money 
and walking distance.  We consider the further 
complication -- quite common in the real world -- that at 
plan generation time the location of taxis is unknown.  The 
plan(s) we generate should give the agent foreknowledge, 
for instance, that if they start walking and hail a cab too 
early, they may end up having to walk again when their 
money runs out.  The generated plan, then, gives the agent 
the tools to be able to operate opportunistically in response 
to changing real world conditions.  

A Simple Travel Domain 
 (Nau et al. 1999) describe a simple transportation planning 
domain to demonstrate the workings of the SHOP planner. 
In this domain the planning agent is downtown and would 
like to either travel to the park or the suburb.  The initial 
state of the world is specified in terms of how much money 
the agent has, whether the weather is bad or good, and the 
locations of bus routes and taxi stands. If the weather is 

good the agent can travel 3 miles, but if it is bad the agent 
can travel 0.5 mile.  The bus costs a flat rate of $1.00, and a 
taxi costs $1.00 per mile plus a constant $1.50.  Figure 1 
presents the full SHOP model for this domain and Figure 2 
an example initial state of the world. SHOP syntax for 
axioms, methods and operators is explained fully in (Nau et 
al. 2000). Briefly, the axioms are represented as Horn 
clauses, the methods as tasks, preconditions, and task lists, 
and the operators as tasks, and add and delete lists. 
 
A1 (:- (have-taxi-fare ?distance) 
       ((have-cash ?m) 
        (eval (>= ?m (+ 1.5 ?distance))))) 
A2 (:- (walking-distance ?u ?v) 
       ((weather-is ’good)  
      (distance ?u ?v ?w)  
        (eval (<= ?w 3))) 
       ((distance ?u ?v ?w)  
        (eval (<= ?w 0.5)))) 
M1 (:method (pay-driver ?fare) 
       ((have-cash ?m)  
     (eval (>= ?m ?fare))) 
     ‘((!set-cash ?m ,(- ?m ?fare)))) 
M2 (:method (travel-to ?q) 
       ((at ?p) (walking-distance ?p ?q)) 
       ’((!walk ?p ?q))) 
M3 (:method (travel-to ?y) 
     (:first (at ?x)  
     (at-taxi-stand ?t ?x) 
        (distance ?x ?y ?d)  
     (have-taxi-fare ?d)) 
      ‘((!hail ?t ?x) (!ride ?t ?x ?y) 
        (pay-driver ,(+ 1.50 ?d))) 
       ((at ?x) (bus-route ?bus ?x ?y)) 
       ‘((!wait-for ?bus ?x)  
      (pay-driver 1.00)  
      (!ride ?bus ?x ?y))) 
O1 (:operator (!hail ?vehicle ?location) 
       () 
       ((at ?vehicle ?location))) 
O2 (:operator (!wait-for ?bus ?location) 
       () 
       ((at ?bus ?location))) 
O3 (:operator (!ride ?vehicle ?a ?b) 
       ((at ?a) (at ?vehicle ?a)) 
       ((at ?b) (at ?vehicle ?b))) 
O4 (:operator (!set-cash ?old ?new) 
       ((have-cash ?old)) 
    ((have-cash ?new))) 
O5 (:operator (!walk ?here ?there) 
       ((at ?here)) 
       ((at ?there))) 
 
Figure 1: SHOP Simple Transportation-planning Domain 

 



((distance downtown park 2) 
 (distance downtown uptown 8)  
 (distance downtown suburb 12) 
 (at-taxi-stand taxi1 downtown) 
 (at-taxi-stand taxi2 downtown) 
 (bus-route bus1 downtown park) 
 (bus-route bus2 downtown uptown) 
 (bus-route bus3 downtown suburb) 
 (at downtown) 
 (weather-is ’good) 
 (have-cash 12)) 

 
Figure 2: Example world state for Transportation-planning  
 
By varying the initial conditions it is seen that SHOP is 
able to generate a number of feasible plans to travel to the 
park, uptown or the suburb.  Given the ability to embed 
Lisp code in the axioms and methods of the model, SHOP 
is able to "reason" about limited resources such as money 
and the ability to walk certain distances. 

Travel in the Real World 
The SHOP simple travel domain model was never intended 
to demonstrate travel planning in the real world, but it is 
interesting to prod the model to see what it would take to 
make it more lifelike. First of all, it is quite common in the 
real world that you may not have enough money to take a 
taxi all the way across town, but you could take a taxi part 
way and take the bus the remainder.  Or, you could plan to 
walk part of the way, and then catch a taxi. The SHOP 
model in Table 1 is not powerful enough to solve this 
problem. 

Looking at methods M2 and M3 in Figure 1, the 
assumption is that the planning agent is always at one 
location trying to get directly to another location. In order 
to solve this problem we add M4 (see Figure 3) which 
states that to get from location1 to location3, travel to 
location2 and then to location3. 
 
M4 (:method (travel-to ?loc3) 
     ((at ?loc1) 
      (distance ?loc1 ?loc2 ?dist1) 
        (distance ?loc2 ?loc3 ?dist2)) 
       ’((travel-to ?loc2) (travel-to ?loc3))) 
 

Figure 3: A method for traveling indirectly 
 
With the addition of M4, SHOP is able to solve the 
problem in Figure 4, where the goal is (travel-to park). 
 
((distance downtown park 2) 
 (distance uptown downtown 8)  
 (distance downtown suburb 12) 
 (at-taxi-stand taxi1 uptown) 
 (at-taxi-stand taxi2 downtown) 
 (bus-route bus1 downtown park) 
 (bus-route bus2 uptown downtown) 
 (bus-route bus3 downtown suburb) 
 (at uptown) 
 (weather-is ’good) 
 (have-cash 11))) 
 

Figure 4: A travel domain that requires two modes of 
transportation. 
 

The following two plans are generated: 
 
((!HAIL TAXI1 UPTOWN) 
 (!RIDE TAXI1 UPTOWN DOWNTOWN) 
 (!SET-CASH 11 1.5)  
 (!WAIT-FOR BUS1 DOWNTOWN) 
 (!SET-CASH 1.5 0.5) 
 (!RIDE BUS1 DOWNTOWN PARK)) 
 
((!HAIL TAXI1 UPTOWN) 
 (!RIDE TAXI1 UPTOWN DOWNTOWN) 
 (!SET-CASH 11 1.5) 
 (!WALK DOWNTOWN PARK)) 

Real World Taxis are Different than Buses 
To represent many real world cities the model we have 
built is still too contrived. Taxi stands are few and far 
between or nonexistent. The model of waiting at a taxi 
stand for a taxi as you would wait at a bus stop for a bus, is 
not the one we want.  Somehow we’d like to represent the 
idea that just as the distances one can walk don’t fall into a 
set of discrete bins, it might be possible to flag a cab just 
about anywhere and get off anywhere. 

Given this insight, we propose a planning domain that is 
initially simpler than the one we’ve been considering, but 
which is more true to life. In this domain we are uptown 
and would like to get to the park. We have some money, 
but not enough to take a taxi all the way. Depending on the 
weather, we are able to walk a certain distance, but not all 
the way from uptown to the park. We would like to 
generate a feasible plan to get to the park if one exists. The 
world state for this problem is represented in Figure 5, and 
the goal is (travel-to park). 
 
((distance uptown park 10)  
 (at uptown) 
 (weather-is ’good) 
 (good-weather-distance 3) 
 (bad-weather-distance 0.5) 
 (have-cash 10)) 
 

Figure 5: A simplified, but lifelike planning domain. 

The “Hail a Cab” Domain 
It is not difficult to see that unless the amount of money we 
have is just enough to take a taxi to the limit of the distance 
we’re able to walk, there is either no solution to the 
problem or an infinite number of solutions, since the 
distance we can walk is a continuous resource.  In reality, 
taxi meters only turn over at regular intervals, so we could 
enumerate solutions corresponding to those discrete 
intervals, however the number of possible solutions could 
still be huge. 

Another way to look at this problem, though, is to design 
a model such that we plan for the boundary solutions, and 
at plan execution time we can be assured that any of the 
myriad solutions between these bounds will be feasible 
ones. 



The “Hail a Cab” Model 
 
Corresponding to our intuition, then, we would like to build 
into our model the ability to generate two hypothetical 
waypoints during the planning process, call them 
waypoint1 and waypoint2. Given the simplicity of our 
starting world state, we expect that the planner will either 
fail to find a plan, or will generate exactly two plans: one at 
the limit of our money to waypoint1 and one at the limit of 
our walking distance to waypoint2. 

After some trial and error we were able to represent such 
a model in SHOP.  We reuse the model (Figure 1) from the 
simple travel domain (with a few improvements to make it 
more maintainable) and add an "assert" operator O6 as 
described in (Nau et al. 2000). The assert operator has no 
delete-list, and adds all of it’s arguments to the current 
world state. During planning we assert the existence of 
waypoints, and their distance from an origin and 
destination. 

Two new planning methods M5, M6 are added to 
represent the “take the taxi to the extreme” and the “walk to 
the extreme” actions.  In addition, we found it necessary to 
add an axiom A5 which filtered waypoints from non 
waypoints. Before addition of this axiom, the planner 
would thrash while attempting to travel between the two 
hypothetical waypoints or add an ever increasing number 
of new waypoints between the original ones. The full 
model for the "hail a cab" domain is listed in figure 6. 
 

;;****** AXIOMS ****** 
 
;; Fetch the max walking distance from the  
;; database depending on whether the weather is ;; 
bad or good. 
A1  (:- (possible-walking-distance ?wd) 
     ((weather-is ’good)  
        (good-weather-distance ?wd)) 
     ((bad-weather-distance ?wd))) 
 
;; Two points are within walking distance if  
;; distance is less than possible walking  
;; distance. 
A2 (:- (within-walking-distance ?u ?v) 
     ((distance ?u ?v ?w) 
      (possible-walking-distance ?wd) 
      (eval (<= ?w ?wd)))) 
   
;; A taxi costs $1.50 + $1.00/mile 
A3  (:- (have-taxi-fare ?distance) 
       ((have-cash ?m) 
        (eval (>= ?m (+ 1.5 ?distance))))) 
         
;; It’s worth considering a taxi only if you have 
;; at least the $1.50 fixed rate, plus another  
;; $.50 to go a half mile (we can assume the  
;; taxi’s meter clicks over every half mile). 
A4  (:- (worth-considering-taxi ?m) 
       ((have-cash ?m) (eval (>= ?m 2.0)))) 
                 
;; This helper axiom is needed to restrict the  
;; search from attempting to travel from one  
;; waypoint to another. 
A5  (:- (not-waypoint ?w) 
     ((not (is-waypoint ?w)))) 

 
;;****** METHODS  ****** 

         
;; Paying the driver reduces your cash on hand by 
;; the fare. 
M1 (:method (pay-driver ?fare) 
            ((have-cash ?m) (eval (>= ?m ?fare))) 
          ‘((!set-cash ?m ,(- ?m ?fare)))) 
         
;; Attempt to walk. 
M2 (:method (travel-to ?q) 
            ((at ?p)  
             (within-walking-distance ?p ?q)) 
          ’((!walk ?p ?q))) 
         
;; Attempt to take a taxi. 
M3 (:method (travel-to ?y) 
          ((at ?x)  
             (distance ?x ?y ?d)  
             (have-taxi-fare ?d)) 
             ‘((!hail taxi ?x) (!ride taxi ?x ?y) 
               (pay-driver ,(+ 1.50 ?d)))) 
                
;; Taking a taxi "script." 
;; Only to be used when it is certain that  
;; preconditions for taking a taxi are satisfied. 
M4 (:method (take-taxi ?x ?y ?m) 
          () 
          ‘((!hail taxi ?x) (!ride taxi ?x ?y) 
           (pay-driver ,?m))) 
         
;; Attempt to combine taking one form of  
;; transportation with another by hypothesizing a 
;; waypoint, waypoint1. This waypoint represents 
;; spending all your money on a taxi, and then  
;; traveling the rest of the way by some other  
;; means. 
M5  (:method (travel-to ?z) 
          ((not-waypoint ?z) 
           (worth-considering-taxi ?m) 
           (at ?x) (not-waypoint ?x) 
           (distance ?x ?z ?dist)) 
          ‘((!assert 
             ((is-waypoint waypoint1) 
              (distance ?x waypoint1  
                          ,(- ?m 1.50)) 
              (distance waypoint1 ?z  
                          ,(- ?dist ?m -1.50)))) 
          (take-taxi ?x waypoint1 ?m) 
           (travel-to ?z))) 
 
;; Attempt to combine taking one form of  
;; transportation with another by hypothesizing a 
;; waypoint, waypoint2. This waypoint represents 
;; traveling as far as you can walk, and then  
;; taking the taxi (or another means) from that ;; 
point. 
M6  (:method (travel-to ?z) 
          ((not-waypoint ?z) 
           (at ?x) (not-waypoint ?x) 
           (distance ?x ?z ?dist) 
           (possible-walking-distance ?wd)) 
          ‘((!assert 
             ((is-waypoint waypoint2) 
             (distance ?x waypoint2 ,?wd) 
              (distance waypoint2 ?z  
                          ,(- ?dist ?wd)))) 
           (!walk ?x waypoint2)  
           (travel-to ?z))) 
         

;;****** OPERATORS  ****** 
         
;; Operators O1-05 are the same as in Figure 1 
O6  (:operator (!assert ?g) 
            () 
            ?g 
          0))) ;zero-cost to apply 
 
Figure 6: “Hail a Cab” Model 



Given the start state in Figure 5, and the goal of (travel-to 
park) SHOP was able to find the following two plans. 
(Execution time was 0.010 cpu seconds on a Sun Ultra 1 
running Allegro Common Lisp 5.0.1). 
 
((!ASSERT ((IS-WAYPOINT WAYPOINT2)  
           (DISTANCE UPTOWN WAYPOINT2 3)  
           (DISTANCE WAYPOINT2 PARK 7))) 
 (!WALK UPTOWN WAYPOINT2) 
 (!HAIL TAXI WAYPOINT2)  
 (!RIDE TAXI WAYPOINT2 PARK) 
 (!SET-CASH 10 1.5)) 
 
((!ASSERT ((IS-WAYPOINT WAYPOINT1)  
          (DISTANCE UPTOWN WAYPOINT1 8.5)  
           (DISTANCE WAYPOINT1 PARK 1.5))) 
 (!HAIL TAXI UPTOWN) 
 (!RIDE TAXI UPTOWN WAYPOINT1) 
 (!SET-CASH 10 0)  
 (!WALK WAYPOINT1 PARK)) 

 
From this result we can see that any plan where we walk at 
least 1.5 miles and at most 3 miles will be a feasible one.    
Having access to the plan in terms of two boundary 
solutions allows an intelligent agent to act opportunistically 
when executing the plan (hailing a cab at the most 
opportune time). Alternatively, these plan bounds could be 
handed off to a scheduler that may better deal with the 
optimization problem of trading off conserving money, 
conserving walking power, and other factors. 

Critique of this Approach 
Although we were successful in modeling the "Hail a Cab" 
problem and generating plans for it, it is far from being a 
satisfactory solution. First of all, the model is very 
specifically crafted to solve this particular problem.  
Although the model still performs relatively well when we 
add a number of the locations and modes of travel that 
were present in the original model, we found that 
sometimes the plans produced were very counter-intuitive, 
for instance involving travel to "intermediate" waypoints 
that were actually further than the overall distance to the 
goal location, thus resulting in negative distances. 
Although negative distances can be interpreted as a less 
than optimal plan, where some physical "backtracking" is 
taking place, it is probably preferred that these plans not  be 
generated. 

Adding axioms and additional preconditions to some 
methods succeeded in avoiding these "negative distance" 
solutions, however it took quite a level of effort to produce 
a model that generated all feasible plans without getting 
stuck in an endless loop. 

This can be taken as a criticism of the modeling 
paradigm in SHOP, or it can be ascribed to the novice 
status of this author in working with the SHOP modeling 
language. 

In any case, it seems that a more desirable approach to 
this problem would allow us to deal with it at a higher level 
of abstraction.  For instance, it would be nice to be able to 
just specify that a taxi is a type of resource that behaves in 

a certain way, and have the planner be able to reason with 
the attributes of that resource type.  This is the sort of 
capability that SIPE advertises (Wilkins 88), and it would 
be interesting to see a SIPE model for the "Hail a Cab" 
domain. In addition, it would be nice to model “waypoints” 
as a generic type of unfixed location resource, as opposed 
to hard-coding two waypoints in the domain model. 
 
Future Work: Extensions to the Domain 
The “hail a cab domain” attempts to capture some of the 
complexity and uncertainty of catching a cab in a real 
world city. There are a number of dimensions along which 
it could be extended to make it even more lifelike and 
challenging. A few that come to mind are: 

Time Limits.  Quite often it’s important to get across town 
before some deadline. Add in timing considerations to the 
model. 

Restrictions on Origins and Destinations. It’s not 
possible to take a cab anywhere, and in most cities there are 
places you wouldn’t want to be dropped off by a cab, just 
for safety’s sake. Similarly, there are locations where it is 
not likely to catch a cab. Factor location constraints into the 
model. 

Replanning.  Often the weather can quickly change from 
good to bad. Does this necessitate replanning from scratch, 
or is it possible to build some look-ahead into the model? 

Constraint Relaxation.  In the real world we’d never stop 
walking in bad weather one block away from where we 
saw a cab, simply because we’d reached our “bad weather 
walking limit.” What’s a good way to relax this and other 
constraints? 
Benchmark Problems for Real World Planning 
In (Wilkins and desJardins 2001) the authors claim that 
benchmark problems for planning either ignore or filter out 
many of the qualities that typify real world planning 
problems, thus causing research to tend in nonproductive 
directions. We agree that this is a danger, but feel that a 
place remains for benchmark problems which test the 
adequacy of a planner to handle real world problems, even 
if these tests make some simplifying assumptions along one 
or more dimensions. 

We present the "Hail a Cab" problem as a challenge 
problem for other planners to tackle. We  propose the 
following additional metrics (besides execution time) with 
which to evaluate solutions to the problem: 
 
Expressivity.  Does the model express the problem in a 
full and intuitive way? 
Extensibility.  Is the model easily extensible to new real 
world requirements or along new dimensions? 
Maintainability.  How hard is the model to develop, debug 
and improve over time? 
Scalability.  How does the model scale in performance as 
the problem grows in the number of variables?  Are there 
natural ways to apply heuristics to mitigate scalability 



problems? How long does it take for the planner to fail to 
find a plan when there is none? 
 
These metrics, except for possibly the last, are hard to 
quantify, but evaluating them for benchmark problems for 
real world planning can drive research in interesting and 
productive directions. 

Conclusions 
Investigating the "Hail a Cab" model suggests solution 
approaches for planning and scheduling in real world 
transportation domains where differing modes of 
transportation may be employed to achieve the goal of 
getting from an origin to a destination.  Features of this 
model include the generation of hypothetical waypoints 
during plan generation, and reasoning about time bounds 
for non homogeneous actions.  Providing these bounds can 
help ensure execution of a feasible plan. We feel that this 
model can serve as a useful test bed for real world planners. 
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