Dayton Arey

March 26, 2007

Draft 1-2

1. Requirements - 

The following section summarizes the requirements for Netflix or any other company which distributes media in queue to design and develop a database management system.

1.1 Enterprise Overview

Netflix or another company of the same type is structured on a delivery system in which the customer is delivered a movie via request online, and the customer is not required to return the movie within a deadline only that in returning a movie the next movie or movies are mailed to the customer.

1.2 Problem Summary -

In order for the enterprise to function, the customer, employee and movie relations must all be taken into account.

1.3 Users -

The users will be the employees. Customers are allowed only to view their own tuples such as their account and queue information. Restrictions will be made for the type of employee depending on the department and job. The views will focus on the customers and their accounts, queues and movies of the customer, movies and their availability, and the employee information.

1.4 Data -

1.4.1 Customer information – Customers will have one account and queue of movies

1.4.2 Movies – movies will be in various storage facilities which should be taken into account.

1.4.3 Employees – may work in storage facilities and must be in a department.

1.5 Implementation -

A database program such as access and access through web application.

2. Database Design

2.1 Semantic Model -


Customer and Employee entities will be generalized as a person entity set where address, (street, city, state, zip), email, phone, and name will be attributed. The email will serve as the superkey of the person. Customer will have a ID number and number of movies to stream (#stream_movies). The latter attribute is a service for the customer to allow online streaming. Customers will have an account entity set which have it's own ID number(superkey), balance and due date for next payment. Customer will also have a queue entity set which is a weak relationship. Queue will have a derived attribute of the number of movies, and movies_per_showing attribute which will determine how many movies to send when movies are sent back from the customer, and the amount of movies. Queue's discriminator will be movie#, movies_per_showing. The queue will have a “contains” relationship with the movie entity set. “Contains” will determine the movies in queue and have a priority attribute. The movies contain the attributes name, year, director and genre where name and director attribute will act as the superkey.


Employee will have an ID(superkey), hours worked, and salary. Employee has a also a manages relationship with itself and a many-to-one cardinality. Employee has relationship with job entity set which contains the attributes base_salary, title and department where title and department serve as the superkey. Employee has a “works at” relationship with the storage facility entity set which does not necessarily imply that all employee instances are contained in the “works at” relationship. The cardinality from employee is many-to-one. The storage facility entity set has as attributes: address, executive phone and email and storage space. Address's city and state act as the superkey. Storage facility has a relationship “available at” with the movie entity set in which the relationship contains total number of movies attribute.

2.2 Relational Model

person(city, state, street, zip, phone, email)

customer(email, cus_ID, #movies_to_stream, acct_ID, balance, due_date)

employee(email, emp_ID, hours_worked, salary, title, department)

queue(email, cus_ID, #of_movies, #movie, movies_per_showing)

contains_movie(priority, email, cus_ID, #movie, movies_per_showing, name, director)

movie(name, director, genre, year)

mangages(manger.emp_ID, emp.emp_ID)

works_at(email, emp_ID, stor.city, stor.state)

storage_fac(city, state, street, zip, exec_phone, exec_email, storage_space)

available_at(name, director, city, state, total#_of_movies)

