Michael Bailey
1. Requirements Analysis
This section summarizes the design and development of a database management system to handle and store data about characters and items for a computer based game. The purpose of using a database is to allow for an easy creation and storage of data while simultaneously allowing for an almost infinite variety of customization on the part of the user.
1.1 Enterprise Overview:
It is the goal of a group of people (hereafter referred to as “The Company”) to design, implement, and distribute a fully functioning Massively Multiplayer Online Role Playing Game (hereafter referred to as “The Game”). Massively Multiplayer Online Role Playing Games, or MMORPGs, are a type of game made possible only with the advent of the internets as a standard household feature. They allow people who have never met to interact with one another in a role-playing setting with nothing more than a few mouse clicks and keystrokes. Not only that, but it allows for the telling of an interactive story that requires the user of the program (hereafter referred to as “The Player”) to interact with other users to complete quests or other objectives.

Storytelling and gaming have been part of life since the dawn of civilization. Indeed some historians call gaming and other activities that have no practical relevance to survival as the definition of civilization. Board games were common among the ancient Egyptians, though the exact rule sets are unknown now. Many modern games involve the player to pretend they are in a different time, world, or universe; which is the role playing on a very base level. Since the dawn of computers people have been programming games in to take this to a new level through the use of graphics and improved GUI (graphical user interface). Unlike any time before, we can now see ourselves in a story rather than just imagining the image.

It is the goal of The Company to further push the boundaries of such gaming. We hope to provide unrivalled customization of The Player’s character or characters while maintaining an efficient way of storing the data to prevent unnecessary lag (when game-play slows down due to an inability to send, receive, or process data fast enough) to users, even those on archaic dial-up.

1.2 Problem Summary:
The database will be designed to store information both about The Player and all items, spells, and other objects in the game-world. Each object will be unique in the database so that one can completely change one instance of a base item, say a common dagger, to make it any way they want within specified physical limitations, such as they would be able to make it deal fire damage but would not be able to make it act as a cup without melting it down and re-forging the material. Every Player Character (hereafter referred to as a “PC”) and Non-Player Character (hereafter referred to as an “NPC”) will also be stored in the database.
This turns into a lot of information when you try and imagine taking an entire world’s worth of items and characters and representing them all within a computer. There are no other feasible ways of storing such quantities of data, the only real decision will be whether or not to store all relationships between all items in the database, or if that is easier to handle with a scripting language and a database of relationship data that is then interpreted through the scripts and communicates with this database.
1.3 Users:
The foremost user of the database will be The Game. It will access the database through commands that will be written into the program and other extraneous scripts that it uses to keep track of what is going on in the game-world. The Game will have to update the database every time an action is taken that changes an object or area of the game-world.
On occasion the raw data in the database will have to be accessed by an administrator in order to perform maintenance on the world. This would range from fixing an error caused by a faulty variable to adding or removing items or characters that are obsolete or need changing for various gaming issues.
1.4 Data:
The data that will be stored is everything about an object that is represented with a variable in the coding for The Game. Variables are likely to change as coding is ongoing, so those represented here are the bare minimal for what will be in the final product. Other variables may be implemented based off of the latest edition of the code during the final copy of this document.
1.5 Implementation Environment:
Required equipment: the database will have to be stored on a server, or on a computer that is connected directly with the game server or servers. The Game will have to send a signal across the internets to the server to retrieve the data, and update the server with new information about what has changed based off of The Player’s actions.
Required software: the database will be updated indirectly by The Game through the servers, so there will need to be some piece of software in between that converts the different data types so that they can communicate with each other. Also there will have to be multiple encryptions on both sides to prevent people from hacking the servers and changing the database in their favor.
2. Database Design
2.1 Semantic Model:

ER Diagram: see attached document for ER Diagram image.
2.2 Relational Model:
Char(charID, charName, image, (misc attributes), (derived attributes))

Race(raceID, size)

PCRace(raceID, racename, (attributes))

NPCrace(raceID, racename, (attributes))

Profession(profID, (attributes and skills))

Magic(spellID, spellName, spellSchool, spellLevel, spellEffect)

Item(itemID, image, name, value, weight)

Equipment(itemID, durability, bodypart, enchant)

Misc(itemID, type)

Clothing(itemID, style)

Armor(itemID, material, type)

Weapon(itemID, damage, attacktype)

Other(itemID, (not sure what else this is kind of a catch all for anything that doesn’t fit in anywhere else))

hasA(charID, raceID)

isA(charID, profID)

canCast(profID, spellID)

knows(charID, spellID)

enchantedWith(spellID, itemID)

possesses(charID, itemID)

