PROPERTIES OF LINEAR TRANSFORMATIONS 

[Recall properties of functions in Calculus and Discrete Math]

One-to-one (1-1)         T : Rn( Rm    a linear transformation


T is one-to-one if distinct elements of Rn map to distinct   

        elements of Rm.  That is, if u ( v  then  T(u) ( T(v).

For proving 1-1 we use the contrapositive:  

If  T(u) = T(v) then u = v.   

Examples:   Orthogonal Projection is not 1-1











      u
 v



            T(1,2) = (1,0) = T(1,3)  but (1,2) ( (1,3)          










             Reflection about the y axis is 1-1.   


    Suppose   T   x1     =  T   x2
            

  y1              y2  


                         -x1     =      -x2       so    -x1   =  -x2      x1 =  x2
            

  y1              y2                y1   =  y2
Theorem:  Given A an nxn matrix and  TA : Rn(Rn  the transformation given by multiplication by A.  Then the following are equivalent:


a)  A is invertible.


b)  The range of  TA  is  Rn.


c)  TA  is  one-to-one.

[These are essentially parts of the theorem we keep adding to.]

Proof:     Suppose w is a vector in Rn.  Part b) requires that we must find a vector x  in Rn such that TA(x) = w.   That is,  Ax = w. 

This is the same as saying  Ax = w is consistent for all nx1 vectors w.  We have already shown this is equivalent to A being invertible.

We show part c) is equivalent to A is invertible by showing the following: 

TA  is 1-1  if and only if   Ax = 0  has only the trivial solution.  

Suppose TA is 1-1.   If 
Ax = 0   then   TA(x) = 0.  We know that 

 A0 = 0    so   TA(0) = 0. Since  TA is 1-1 and TA(x) = TA(0),  x=0.

Suppose Ax = 0  has only the trivial solution.  If  TA(x) = TA(y) 

then Ax = Ay.   Therefore Ax - Ay = 0   or A(x-y) = 0.  Since this has only the trivial solution x-y = 0  or  x=y.

Because of this theorem we can show a linear transformation is 1-1 by showing its corresponding matrix has a non-zero determinant.

TA is 1-1 if and only if  det A  ( 0.

 Rotation by ( is a 1-1 transformation 

   cos(   -sin(    =  cos2( -  (-sin2()  = cos2( + sin2(  =  1 ( 0

   sin(     cos( 

Projection not 1-1.

    1   0      =   0

    0   0

Inverse Transformations  (recall the idea of inverse functions)

If  TA is a linear transformation is there an inverse  (TA)-1  ?

We find that if A is invertible then TA-1  [T sub A-1] works.

Suppose TA : Rn(Rn  is a 1-1 linear operator.  [We know this implies A is invertible.]  

TA-1 : Rn(Rn   is called the inverse of  TA since the following hold:

TA-1 o TA(x) = TA-1 ( TA (x)) = AA-1x  = Ix = x     and 

TA o TA-1(x) =  TA ( TA-1 (x)) = A-1Ax  = Ix = x
That is,    TA-1oTA  = TI     and   TAoTA-1   = TI

Using the other notation:  [T-1] = [T]-1.  That is, the standard matrix for the inverse of the transformation T is the inverse matrix of the standard matrix of T.

Suppose T rotates by an angle ( in the plane.

    [T]  =     cos(   -sin(         What is [T-1]?  One could solve it 

                 sin(     cos(          geometrically or  note that rotating

                                              by  -( is the inverse transformation.

[T]-1 = [T-1] =   cos(-()   -sin(-() 

                         sin(-()     cos(-()

Linearity Properties.  [Linear transformation work well with linear operations.]

Theorem:      T : Rn( Rm    is a linear transformation if and only if the following hold for all u and v in Rn:



1)   T(u+v) = T(u) + T(v)



2)   T(cu) = cT(u)

Proof:   Suppose T is a linear transformation.  ( Let A=[T] ) 

 
T(u+v) = A(u+v) = Au + Av  = T(u) + T(v)


T(cu) = A(cu) = cAu  = cT(u)    which shows T is linear.

Suppose T is linear (1 and 2 hold).  We "build" a matrix  A such that

T(x) = Ax  to show T is a linear transformation.


    
  1


  0   


                   0

e1 =   0 

e2 =   1
    .  .  . 

en =    0

          . 


  .                                        .    


  0                      0                                       1    


Define   A  to be        T(e1)      T(e2)       . . .      T(en)       




x1
          1               0                                 0

Note:    x  =     x2    =  x1   0      + x2   1        +    . . . +    xn    0




.

  .

    .                                 .

                        x1                0                0                                1

                                = x1 e1        + x2e2        +    . . . +    xn en
So  T(x) = T(x1 e1        + x2e2        +    . . . +    xn en)

              =  T(x1 e1)      + T(x2e2 )      +    . . . +   T(xn en)

              =   x1T(e1)      + x2T(e2 )      +    . . . +  xnT(en) 

              =  Ax   (linear combination of the columns A as described on the bottom of page 30.)

Note: {e1 , e2 , . . . , en } is called the standard basis for Rn  and will be used extensively later in the course.

Theorem:  Suppose that   T : Rn( Rm    is a linear transformation.

We have shown that 


            [T]     =         T(e1)      T(e2)       . . .      T(en)       
Example:   Suppose   T : R3( R2    and   

  T(e1) =  0     T(e2) =  1     T(e3) =  2

               1                   1


 3   

[T]  =   0  1  2

            1  1  3

Eigenvalues and Eigenvectors for Linear Transformations

Assume   T : Rn( Rn    is a linear operator.

( is an eigenvalue of T if and only if there is an x(0 such that 

T(x) = (x.  x is an eigenvector corresponding to (.

Fact:  Eigenvalues for T are the same as the eigenvectors for

A, where T(u) = Au.  That is [T] = A.

Example:  Let T be the linear transformation that reflects a point in the plane about the line y=x.   T(x,y) = (y,x).

If  T(x,y)= ((x,y) also, then  

((x,y) = (y,x)  
(x = y   and  (y=x.      y = (((y)   y = (2y    (2 =1    (=(1

T(x,y)=1(x,y)    or  T(x,y) = -1(x,y)

What are the corresponding eigenvectors?







